
A LATEX Driver for the FreeHEP VectorGraphics Framework

Andre Bach

Reed College

Student Undergraduate Laboratory Internship (SULI)

Stanford Linear Accelerator Center (SLAC)

Stanford, California

August 20, 2004

Prepared in partial fulfillment of the requirements of the Office of Science, Department of

Energy’s Science Undergraduate Laboratory Internship under the direction of Mark Dönszelmann

in the Computing Services Department at the Stanford Linear Accelerator Center.

Participant:

Research Advisor:

Table of Contents

Abstract . 1

Introduction . 1

Java and FreeHEP . 2

Figure 1: VectorGraphics class structure. 4

Implementation of the Driver . 4

Figure 2: TestLineStyles . 7

Conclusion . 8

Acknowledgements . 8

References . 9

Abstract

A LATEX Driver for the FreeHEP VectorGraphics Framework. ANDRE BACH (Reed College,

Portland, OR 97202) MARK DÖNSZELMANN (Stanford Linear Accelerator Center, Stanford,

CA 94025)

The FreeHEP library is the ongoing project of an open source collaboration to create and share Java

code in high energy physics and other fields. One component of FreeHEP is the VectorGraphics

framework, which enables the export of graphics to a wide variety of formats beyond Java’s basic

capabilities. This paper describes an addition to VectorGraphics, a driver for the LATEX PSTricks

package. LATEX is a markup language in wide use by physicists and others for producing academic

papers for publication. PSTricks is an extension of LATEX that provides PostScript macros allowing

complicated vector graphics to be written directly into LATEX code. The ability to export graphics

directly to a LATEX native format will ease their inclusion into such documents. The context of

FreeHEP and VectorGraphics into which this driver fits is described. All the main functionality

of the driver is in place, but some limitations remain. Some details of its construction, as well as

outstanding problems, are addressed.

Introduction

High energy physics is one of the most successful and spectacular of the sciences. At the

Stanford Linear Accelerator Center, a few of the many areas of research are the investigation

of CP Violation, the subtle difference between the laws governing matter and antimatter; the

characterization of many different materials using synchrotron radiation; and the construction of

GLAST, a satellite that will provide unprecedented clarity in gamma ray astronomy. All this

requires considerable support structure, both physical and computational. FreeHEP is an open

source Java library of various components and other programs that are of use in both high energy

physics and other fields [1–3]. FreeHEP contains packages for, among other things, high energy

physics data analysis and event display, a framework for Java applications, and the subject of this

paper, VectorGraphics, an extension of the graphics capabilities of the standard Java libraries.

The experiments of high energy physics invite the use of graphics and visualization. Besides

the graphs and plots common to all sciences, high energy physics also features large detectors and

intricate collisions that must be assessed visually in order to properly work with and appreciate the

data and experiments. These graphics, then, must be included in academic papers and many other

communications. This necessitates a means of exporting graphics from the various programs used

in high energy physics to formats compatible with the different types of documents in which they

will be included. The core Java graphics libraries [4] cannot accomplish this, as they output only

bitmaps, which are ill suited for scaling and other common manipulations. Graphics formats fall

into two categories, bitmap and vector. In a bitmap graphic, a color is specified for each pixel in a

way analogous to photographic film, making it inappropriate for highly ordered line graphics such

as graphs. Vector graphics are specified in terms of the lines and curves that appear in the picture

and thus scale perfectly while frequently requiring less disk space. The VectorGraphics package of

the FreeHEP library is an extension of the Java graphics system that enables programs used in

1

physics and other fields to export graphics to a wide variety of formats, fulfilling the need.

The goal is to create and test an addition to VectorGraphics, a driver for outputting vector

graphics in a LATEX format, suitable for direct inclusion in a LATEX document. LATEX, a more

user-friendly extension of TEX, is a markup language in wide use in the physical sciences and other

areas. Markup languages (of which HTML is another example) are used to format text by entering

the text along with commands specifying font, text size, and all other attributes into a source

file which is then compiled to produce the final document. LATEX allows authors to easily achieve

near-professional quality typesetting themselves with minimal intervention from journal editors,

increasing the speed and ease of publishing and allowing documents created by those with minimal

typographical skill to appear professionally produced. It is especially popular for its powerful

formatting of mathematical equations. Currently, the most common method for including graphics

in LATEX documents is to produce a stand alone graphics (e. g., PostScript) file and provide a

reference command to it in the LATEX source code along with information specifying the location

and size of the graphic in the document [5, 6]. A driver for writing vector graphics directly to

LATEX code for inclusion into the LATEX source of a document will ease the inclusion of graphics

in documents produced by LATEX. This will be of use to both the high energy physics community

and the many other users of LATEX. A further benefit is the ease with which those already familiar

with LATEX can hand-edit the graphics code for fine control and changes to the images, something

far more difficult with the more esoteric PostScript code.

Java and FreeHEP

FreeHEP is an open source project, open to all for use or modification. This aids high energy

physics and other fields by minimizing duplication of effort and allowing widely dispersed groups

to build on each other’s work. The vast majority of FreeHEP is written in Java code. The primary

benefit of using Java is its cross-platform compatibility. In most programming languages, the source

2

code is compiled to the machine-readable code that is actually run by the computer. Since each

platform has very different machine code, this makes it difficult to port programs from one system

to another. Java source code, on the other hand, is always compiled to code readable by the Java

Virtual Machine. When a Java program is run, the computer runs the JVM, and the JVM runs the

program and relays its commands to the computer in the appropriate platform-specific language.

Thus, Java programs will run on any platform for which a JVM has been written, practically all

of them.

A further benefit of Java is that it is an object oriented programming language. This means

that the code for a project is divided into smaller units, called classes, that can interact with

each other in various ways. This allows the FreeHEP libraries to be both modular and easily

expandable. Each graphics driver, for instance, is a different implementation of the same superclass.

This eliminates redundancy because all the code common to all drivers is written just once, in the

superclass, and makes it easy to determine exactly what a new driver must do. Finally, we feel

that several technical features of Java, such as not needing to manually deal with memory leaks,

make programming with it more efficient and rewarding.

Several of the components of the FreeHEP library and related projects produce graphics

that authors may want to include in their papers. JAS3, a data analysis tool, outputs histograms,

scatter plots, and other graphs [7]. WIRED, a framework for the visualization of high energy

physics events, outputs displays of detectors and particle paths [8,9]. There are, in addition, many

more components of FreeHEP that do not have a direct bearing on graphics. This project is part

of the VectorGraphics portion of FreeHEP, which enables the other FreeHEP programs to export

graphics to a wide array of formats. Because of the minimal interdependence of the FreeHEP

libraries, outside developers can also freely use VectorGraphics for their programs without using

the rest of FreeHEP.

The VectorGraphics package has a somewhat complex structure of classes, illustrated in

3

Figure 1: Diagram of VectorGraphics class structure.

Figure 1. The Graphics and Graphics2D classes are part of the standard Java installation used

by everyone. VectorGraphics and AbstractVectorGraphics redefine the standard methods and add

additional methods. VectorGraphicsIO and AbstractVectorGraphicsIO provide additional methods

and an outline for specific vector graphics drivers. The core of this project, LatexGraphics2D, is

another entry at the bottom right of the figure, joining the other individual packages. Running

parallel to the illustrated class structure are the support classes that handle specific tasks. Most

important of these are the PathConstructors, which manage the drawing of lines and curves.

Implementation of the Driver

The basic task of a graphics driver such as this one is to convert the information of a graphic

from the form it exists as within a program into a specific file type that can be written to disk,

in this case LATEX. The information comes to the driver in the form of method calls. That is, if

4

the color is to be set to blue, a section of code named writePaint(...) will be called with the

color blue as its argument. The output is one file of a linear sequence of commands that can be

interpreted by the LATEX compiler to produce the actual picture again and are also human readable

and editable. Standard LATEX has only very limited capabilities for producing graphics, so for

writing graphics to LATEX it is necessary to use an extension that includes all the standard graphics

commands. Originally we considered pict2e, an extension of the standard picture environment, but

we found its capabilities to be too limited [10]. Another LATEX extension, PSTricks [11], was found

to be suitably comprehensive. PSTricks allows most PostScript commands to be written into LATEX

files by way of user-friendly macros, though it does have some limitations.

Any driver extending the Java Graphics2D class has a number of methods that it must im-

plement, a list that is further extended by the VectorGraphics superclasses. The starting point

in creating a new VectorGraphics driver is a class called DummyGraphics2D. This contains decla-

rations of all the required methods along with brief descriptions of what each is supposed to do,

a very useful tool given the large number of methods to be implemented. While this forms the

basis of LatexGraphics2D, the core of the driver, two other components, LatexPathConstructor and

LatexExportFileType, also had to be created. This structure is shared with all the VectorGraphics

drivers, some of which have many more secondary classes. Frequently the most useful technique

when uncertain about some aspect of the program is to look at how that same aspect was handled

in the many other drivers that are already written.

One example of code and the output produced is provided to illustrate the operation of the

driver. Suppose that the picture contains a triangle. This is stored as an object with specifications

of where the vertices are located. The first piece of code in LatexGraphics2D called to draw the

triangle is draw(...):

5

public void draw(Shape shape) {
LatexPathConstructor pc = new LatexPathConstructor(ps);
try {

ps.println("\\pscustom[fillstyle=none]{");
pc.addPath(shape, getTransform());
ps.println("}");

} catch (IOException e) {
handleException(e);

}
}

The code above writes the beginning of a pscustom environment, in which all objects are drawn,

to the printstream ps that will become the file. It then passes the shape to a new PathConstructor

pc, which writes the code for that shape. After it finishes that, the pscustom environment is ended.

Breaking the shape down into its components is the same for all formats and so is handled by the

PathConstructor superclasses. When that is done, methods in LatexPathConstructor write the

lines and other components of the triangle. One such method is line():

public void line(double x, double y) throws IOException {
ps.println("\\lineto("+fixedPrecision(x)+","+fixedPrecision(y)+")");

}

This simply writes a command specifying that a line be drawn from whatever the current point is

to the point x, y. Other methods for drawing curves and moving the current point are similar. The

final output for a triangle might look like this:

\pscustom[fillstyle=none]{
\moveto(300.0,388.105117)
\lineto(267.0,330.947441)
\lineto(333.0,330.947441)
\closepath

}

This PSTricks LATEX code creates a triangle by moving to a certain point, drawing a line from that

point to another, drawing a second line from the endpoint of the first line to a third point, and

then closing the path, which draws a line from the last point to the point that was the argument

of \moveto. The true visible lines are actually drawn (“stroked”) only at the end of the pscustom

environment, which allows the line joins to be drawn properly.

6

Figure 2: Output of TestLineStyles.

The VectorGraphics drivers are tested by means of about thirty test files, small Java pro-

grams that produce images to test specific aspects of a graphics driver. The simplest of these,

TestLineStyles, is shown in Figure 2. The primary means of writing the driver is to attempt to

implement some feature, run the appropriate test file, see if it is drawn correctly, fix the code, and

repeat as necessary.

An additional test class, TestGraphicsContexts, was written for this project. From the point

of view of the Java program, graphics are drawn in graphics contexts, each with different style

specifications such as current color and line width. In Java, these contexts can be nested within

each other, but since the output file is linear, the style specifications must be saved when a context

is exited and restored when it is re-entered. TestGraphicsContexts was created to ensure that this

process was handled correctly.

The major features of the driver are all in place, but there are some limitations and room for

future work. In a few cases, text appears misplaced. Text cannot be resized by the same mechanism

as the rest of the image. The files that are currently created are stand alone LATEX files and must

7

have their headers deleted by hand to be included in other LATEX files; there should be an option in

the save as dialog to save as a stand alone file or not. These files may be included in other LATEX

files by using the \input{file} command as the \includegraphics{file} command would be used.

Some limitations are due to PSTricks, which does not currently support a number of features such

as line join styles or repeating gradients. Further details on the limitations may be found in the

FreeHEP API [12].

Conclusion

A driver was created using the FreeHEP VectorGraphics framework that allows any Java

program using the VectorGraphics package to export graphics to a LATEX file using the PSTricks

extension. The driver has several limitations, which are documented.

Acknowledgements

I thank the Department of Energy and the Stanford Linear Accelerator Center for creating,

organizing, and funding the Summer Undergraduate Laboratory Internship program, which made

this project possible. I also thank my mentor, Mark Dönszelmann, for all his help. Finally, thank

you to all the other participants in the program for making it so interesting.

8

References

[1] (2004, Aug.) The FreeHEP Java library. [Online]. Available: http://java.freehep.org/

[2] M. Dönszelmann, “FreeHEP Java library,” presented at CHEP, 2003. [Online]. Available:
http://java.freehep.org/talks/CHEP148.ppt

[3] M. Dönszelmann, J. Hrivnac, G. Bower, T. Johnson, J. Perl, and C. Loomis,
“The FreeHEP Java library,” presented at ACAT, 2000. [Online]. Available: http:
//java.freehep.org/talks/ISAT201.ppt

[4] (2004, Aug.) Java 2 platform, standard edition, v 1.4.2 API specification. [Online]. Available:
http://java.sun.com/j2se/1.4.2/docs/api/

[5] H. Kopka and P. W. Daly, Guide to LATEX, 4th ed. Boston: Addison-Wesley, 2004.

[6] A. Hoenig, TEXUnbound. New York: Oxford University Press, 1998.

[7] (2004, Aug.) Java Analysis Studio. [Online]. Available: http://jas.freehep.org/

[8] A. Ballaminut, C. Colonello, M. Dönszelmann, E. van Herwijnen, D. Köper, J. Korhonen,
M. Litmaath, J. Perl, A. Theodorou, D. Whiteson, and E. Wolff, “WIRED—world
wide web interactive remote event display,” in CHEP, 2000. [Online]. Available:
http://chep2000.pd.infn.it/short p/spa f118.pdf

[9] (2004, Aug.) WWW interactive remote event display. [Online]. Available: http:
//wired.freehep.org/

[10] H. Gäßlein and R. Niepraschk, The pict2e Package, pict2e.pdf, 2004. [Online]. Available:
http://www.ctan.org/tex-archive/macros/latex/contrib/pict2e/

[11] T. van Zandt, PSTricks User’s Guide, 1993. [Online]. Available: http://www.tug.org/
applications/PSTricks/

[12] (2004, Aug.) FreeHEP overview. [Online]. Available: http://java.freehep.org/lib/freehep/api/

9

