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Abstract
High-throughput Next-Generation Sequencing (NGS) data are increasingly ubiquitous and 
abundant for life science and health care research. Many applications of this technology rely on 
high-fidelity mappings of new sample data to a previously characterized reference sequence. 
There are a growing number of tools capable of performing such read mapping, including the 
Geneious 6.0.3 Read Mapper. This white paper describes the read-mapping algorithm included 
with the Geneious software package (Kearse et al., 2012) and provides a comparison with other 
leading open-source read-mapping algorithms. Six read mapping algorithms were evaluated 
on Illumina HiSeq and Ion Torrent sequence data from an Escherichia coli - BWA (0.6.2-r126), 
Bowtie 1 (0.12.8), Bowtie 2 (2.0.0-beta7), SMALT (0.6.4), SOAP2 (2.20) and Geneious (6.0.3). 
The results demonstrate that the Geneious Read Mapper produces superior results to the other 
mapping algorithms on these data sets.

Introduction
The goal of a mapping algorithm is to align short DNA sequence fragments to a reference 
sequence. In practice, the fragments produced by sequencing machines contain a variety of 
systematic and random errors, and the sample data may frequently be a different strain or 
species from the reference sequence. This means that imperfect matches between the sample 
and the reference may be either error or information. In the following image variations between 
the sample and the reference sequence are highlighted. Visually it is easy to determine which 
variants are sequencing errors and which are true variations from reference.
 
 



Figure 1: Highlighting sequencing errors and true variations between the sample and the reference

 
A reasonable approach to mapping is to find a Smith-Waterman (Smith and Waterman, 1981) 
alignment of each sequencing read to the reference sequence. When the sample being 
sequenced is highly similar to the reference sequence, this is an excellent approach. However, 
when the sample has diverged from the reference sequence, particularly in the presence 
of insertions or deletions, an independent Smith-Waterman alignment of each read to the 
reference is often incorrect. For example aligning each read independently would produce 
the alignment shown in Figure 2, whereas a correct mapping that doesn’t treat each read 
independently should produce the alignment shown in Figure 3.
 

 

Figure 2: An independent Smith and Waterman alignment for each read

 
 

 
 

 



 

Figure 3: A correct alignment where each read is not treated independently

 
 
Importantly, Smith-Waterman is a local alignment algorithm and will tend to truncate the aligned 
region to improve the overall identity. While local alignment may have the beneficial effect of 
trimming the sequences, it is also likely that the gaps required by the correct alignment will be 
too costly, especially at the ends of a read, and the algorithm may truncate matching regions 
instead of accepting the cost of a gap (INDEL). Using a global alignment algorithm such as 
Needleman-Wunsch (Needleman and Wunsch, 1970) would avoid the truncation introduced by 
the local alignment. Realistically, determining an independent Smith-Waterman or Needleman-
Wunsch alignment of each read to the reference is too computationally demanding on real 
data sets where there can be upwards of 1 billion sequencing reads to align to the reference 
sequences so mapping algorithms implement heuristics to find alignments. Geneious uses such 
heuristics, but also takes additional measures to ensure the mapping is globally correct rather 
than just an independent pairwise alignment of each read to the reference sequence.

Geneious Read Mapper Algorithm Overview
The first step implemented in the Geneious Read Mapper is the building of an index that records 
the location of all occurrences of all possible nucleotide sequences of a given length in the 
reference sequence. The exact length used for the index depends on the sensitivity chosen, but 
is typically in the range 10 to 15 bases, which produces a good trade off between sensitivity and 
performance.
 
For example, if our reference sequence is GATTATT and our index length is 2, then we would 
construct an index recording the positions that each possible subsequence starts from in the 
reference sequence:
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For each sequencing read this table is used to identify the locations in the reference sequence 
of all subsequences of this length from the sequencing read. These are sorted and filtered to 
remove redundant adjacent matches to minimize the computation required by the algorithm later 
in the process.
 
For example, if we are searching for the location of TTAT, there are five candidate positions:
1: TT (the first two nucleotides for the query sequence) occurs at positions 3 and 6
2: TA (the 2nd and 3rd nucleotides) occurs at position 4
3: AT (the 3rd and 4th nucleotides) occurs at positions 2 and 5
 
These are sorted by diagonals (the difference between the position in the read and the position 
in the reference sequence) and nearby positions on the same diagonal are eliminated to leave 
three candidate positions, AT at positions 2 and 5 and TT at position 6.
 
For each remaining subsequence match, Geneious expands the matching region towards the 
ends of the sequencing read, potentially introducing gaps in regions where there is a mismatch 
with the reference sequence. 
 
Continuing with the above example the three candidate subsequences are expanded to form 
the following alignments:
 
 

 GATTATT
TTAT

GATTATT
  TTAT

GATTATT
     TTAT

 
Each fully expanded result is assigned a score based on the number of matches, mismatches 
and gaps introduced and the highest scoring result is used as the final location to which the 
read will be mapped. Reads that map equally well to multiple locations can either be mapped 
to a random best location, not mapped at all, or mapped to all locations at the discretion of the 
user.
 
Paired reads have their score slightly adjusted to favor those pairs that are closest to their 
expected insert size. For example, if two reads with an expected insert size of 500 bases maps 
perfectly to locations that are 5000 bases apart, but one of the reads mapped with a single 
mismatch at a location approximately 500 bases from its pair, then this second location would 
be selected.
 
Running the Geneious Read Mapper algorithm (Figure 4) with default settings obtains results 
comparable to the best read mappers available, but at higher sensitivity settings it outperforms 



other mappers as demonstrated in the results section below. The results are significantly 
improved by the use of an iterative system (new in Geneious 6), where the Geneious Read 
Mapper maps reads to the consensus sequence from the previous iteration. The reads are 
converted back to mappings relative to the original reference sequence and the process is 
repeated. This allows more reads to be mapped to variable regions, makes reads better align to 
each other in INDEL regions (important for downstream analyses such as variant calling), and 
reduces the likelihood of reads mapping to an incorrect location in near perfect repeat regions.
 
In addition to the primary mapping algorithm and fine-tuning iteration, there are many heuristics 
and minor algorithms used throughout the mapping and iterative processes to improve the 
quality of results. For example, allowing a single mismatch in the seed, correct handling of 
circular genomes, consistently choosing the same one of many equally optimal results and 
weighting reads differently during consensus calling based on the number of mismatches to the 
reference.
 
As well as providing excellent results, the Geneious Read Mapper is also easy to use. It is 
integrated into the Geneious software platform, so researchers need not be familiar with 
command line tools to run the algorithm. Geneious is also agnostic with respect to input data 
file formats and the sequencing machines that created the data, so researchers do not need 
to concern themselves with the details of file formats or sequencing-technology specific errors 
or artifacts. The major considerations for a researcher are to assign the correct reference 
sequence and to select the desired speed/sensitivity trade-off.

 



Figure 4: The Geneious Read Mapper settings

 
One potential criticism of the Geneious Read Mapper is the higher memory requirements when 
compared to other algorithms. For example, Geneious requires ~14 GB (10 GB for single 
iteration mapping) compared to about 2.5 GB for Bowtie1. With modern machines, where 16 GB 
of memory costs around $100, the 14 GB used by Geneious is not a concern.

Quality Comparison
Evaluating the quality of read mapping algorithms is complex. For a more detailed discussion 
on challenges associated with this see Holtgrewe et al. (2011). One new challenge that arose 
during this study is that the gold standard for quality as used by Holtgrewe and colleagues is 
actually below the quality of results produced by the Geneious Read Mapper. For example a 
naive mapping algorithm may choose to map a read to a location where it matches perfectly to 
the reference sequence, but, in fact, the read should be mapped to a location where it doesn’t 
match perfectly. Here we describe two scenarios in which mapping a read to a location perfectly 
can be incorrect.
 
1) Paired distances should be taken into account. A read at its expected paired distance with 
a single mismatch is more likely to be correct compared to mapping it at a distance of 10 times 
its expected distance without any mismatches. For example, imagine two 10 bp reads with an 
insert size of 30. If we favor mapping at the correct insert size, the result would be:
 
 

But if we favor no mismatches, the result would be

At only twice the expected distance, either result could be correct and we can’t say with 
certainty which one is, but if in the second case the distance between the perfect matches was 
say 10,000 bp, then most likely the mapping with a single mismatch is correct.
 
2) Other reads may provide a strong indication that the sample does not match the reference 
sequence at a location.
 
  

1 http://bowtie-bio.sourceforge.net/index.shtml

http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml


In the above example there is evidence that the sample differs from the reference sequence 
and therefore ‘read 3’ may be better mapped elsewhere even though it perfectly matches the 
reference sequence at this location.
 
Putting aside problems such as this, evaluating quality is difficult. When using real sample data 
for an entire genome, even with a known reference we can’t even be sure what the correct 
results should be for our sample. On the other hand, using simulated data where the answer is 
known doesn’t accurately test how well the algorithm will perform on real data. 
 
To ensure that we know both the correct alignment result and use real data for our analysis, we 
took Illumina HiSeq 2000 90 bp paired reads2 from a whole genome re-sequencing sample of 
E. coli K-12, but limited it to a single well-characterised reference gene, yghJ where the correct 
alignment results are known. All 5,411,112 reads of the whole genome sample data set were 
mapped to NC_0009133 (E. coli str. K-12 MG1655) using both the Geneious Read Mapper at 
high sensitivity and Bowtie. The reads where both pairs fully intersected the yghJ gene and 
where each read in the pair was at least 15% identical to the reference were extracted to form 
the 5,060 paired read data set and was identical for both the Geneious Read Mapper and 
Bowtie.
 
To begin the comparison across multiple mappers, the 5,060 paired read data set of E. coli K-
12 MG1655 for the yghJ gene was mapped to the yghJ gene from E. coli IAI1 (NC_0117414) 
using a variety of algorithms. These two genes are 89% identical. Most of the variance comes 
from substitutions although there are four short INDELs. To evaluate the quality of the mapping 
for each read we made a record of how many mismatches the read has when aligned to the 
yghJ gene from NC_000913. Since the sample data consensus corresponds exactly to the yghJ 
gene from NC_000913 this indicates the number of errors present in each read. The consensus 
sequence was obtained from the mapped reads. A Needleman-Wunsch pairwise alignment of 
this consensus sequence with the yghJ gene from NC_000913 was made and the percentage 
of identical columns used to evaluate the Consensus Accuracy column in the following table. 
The number of mismatches between each mapped read and the consensus sequence were 
evaluated. If the number of mismatches exceeded the number of known errors for that read, 
then that read was considered to have been incorrectly aligned to the consensus.
 

2 Available from http://biomatters.com/assets/data/eColiYghjGeneData.zip

3 http://www.ncbi.nlm.nih.gov/nuccore/NC_000913
4 http://www.ncbi.nlm.nih.gov/nuccore/NC_011741
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Quality Comparison Results
 

Algorithm # Mapped % Mapped % Mapped & correctly 
aligned to consensus1

Consensus 
Accuracy 2

Bowtie 15 (default settings) 470 9.3% 9.2% 28.8%

Bowtie 26 (default settings) 2,226 44.0% 43.2% 84.0%

Bowtie 2 (very-sensitive-
local)

4,320 85.4% 74.7% 96.5%

SOAP27 (default settings) 1,316 26.0% 26.0% 48.4%

BWA8 (default settings) 2,878 56.9% 53.1% 89.0% 

SMALT9 (default settings) 4,633 91.6% 89.6% 96.5%

Geneious10 (single 
iteration, default sensitivity)

4,543 89.8% 85.6% 97.1%

Geneious (single iteration, 
highest sensitivity)

5,060 100.0% 96.1% 99.7%

Geneious (default settings) 5,060 100.0% 100.0% 100.0%

5 [Langmead et al, 2009]

6 [Langmead and Salzberg, 2012]

7 [Li et al., 2009a]

8 [Li and Durbin, 2009]

9 http://www.sanger.ac.uk/resources/software/smalt/
10 http://www.geneious.com/
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Table 1: Quality comparison of mappers on Illumina HiSeq data
 
 
The following table provides a more graphical representation of the above results by displaying 
a coverage graph spanning the length of the yghJ gene.
 

Algorithm Coverage

Bowtie 1
(default)

SOAP2
(default)

BWA 
(default)

Bowtie 2
(default)

Bowtie 
2 (very 
sensitive)

SMALT
(default)

Geneious
(default)

Figure 5: Graphical coverage plots in Geneious for each mapping algorithm
The following images provide a closer look at the alignment produced by some of the best 
mappers around two INDEL regions. In the first region you can see that Geneious will make 
reads span the three base pair gap even if it means there is only a single base pair on one side 
of the gap. Other algorithms don’t span the gap near the end of reads or span it differently for 
different reads.



Figure 6: Region 1. Geneious
 
 

Figure 7: Region 1.  Bowtie 2 - Very Sensitive
 

 
 



Figure 8: Region 1. SMALT

In the following region, all reads in the Geneious alignment correctly aligned the three base pair 
insertion including reads that terminate inside the insertion. Bowtie 2 fails to map any reads 
spanning this insertion even with its most sensitive settings. SMALT manages to span the 
region, but does so incorrectly and inconsistently.

 

Figure 9: Region 2. Geneious



 

Figure 10: Region 2. Bowtie 2 - Very Sensitive

 

Figure 11: Region2. SMALT
 
 
The same process as outlined above for Illumina data was repeated using a whole genome Ion 
Torrent data set containing 2,460,975 of reads (SRR51592711). The reads which mapped to the 
yghJ gene created a subset of 2,536 reads, however, due to low coverage at the ends of the 
yghJ gene, the consensus sequence can’t be called with accuracy and confidence. To improve 
the quality of the consensus calling, those reads that overlap the ends were also included 
and trimmed to the gene, keeping those with at least 80 bp. 80 bp was chosen since that is 
the minimum length read that fully intersects the yghJ gene. This Ion Torrent data contains a 
relatively high frequency of INDEL errors, so identifying the correct alignment (from a set of 
possible alignments) of each read to the consensus sequence isn’t always possible, so the ‘% 
Mapped & correctly aligned to consensus’ column is not included in the following table.
 
 

11 http://www.ncbi.nlm.nih.gov/sra/SRR515927
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Algorithm # Mapped % Mapped Consensus 
Accuracy

Bowtie1 4 0.2% 3.6%

SOAP2 3 0.1% 3.6%

Bowtie 2 (default settings) 1,090 43.0% 84.3%

Bowtie 2 (very sensitive) 2,028 80.0% 99.2%

BWA 42 1.7% 21.3%

SMALT 2,158 85.1% 99.3%

Geneious (single iteration, 
default sensitivity)

2,306 90.9% 99.6%

Geneious (single iteration, 
highest sensitivity)

2,532 99.8% 99.7%

Geneious (default settings) 2,535 99.96% 100.0%

Table 2: Quality comparison of mappers on Ion Torrent data
 

Performance Comparison
Mapping times are fairly unimportant relative to the importance of obtaining correct results, 
but they are still of interest. The above results (which focused only on quality) were for a 
single gene and were generated almost instantly for all algorithms. So in order to be evaluate 



performance, all 5,411,112 reads from the original Illumina dataset were mapped to E. coli IAI1 
with default settings. For downstream visualization and analysis, read mappings usually need 
to be sorted. The Geneious Read Mapper automatically sorts and indexes results as part of its 
mapping process so for those mappers that don’t perform their own sorting, the results were 
converted to BAM format and sorted using SAMtools 0.1.1812.
 

Algorithm Ubuntu 12 Duration 
(minutes:seconds)

(Mapping + Sorting13)

Windows 7 Duration 
(minutes:seconds)

 

Bowtie 1 3:39 (1:00 + 2:39) 5:07 (2:38 + 2:29)

Bowtie 2 6:42 (3:50 + 2:52)  

BWA 5:50 (3:02 + 2:48)  

SOAP2 7:11 (1:41 + 3:2214 + 2:08)  

SMALT 3:19 (0:44 + 2:25)  

Geneious (single iteration) 1:31 1:22

Geneious (default settings - 5 iterations) 5:34 4:33

Table 3: Performance comparison of mappers on Illumina HiSeq data
All comparisons were run on an Intel Core i7-2600 3.4GHz (four physical cores, eight logical cores) with 16 GB RAM. 
All durations are mean durations from at least two runs, and are provided only to give an approximate indication of 
performance of each algorithm. Actual run times may vary from run to run, even on the same hardware and data.

Discussion
High fidelity mapping such as that demonstrated by the Geneious Read Mapper in version 6.0 is 
critical to ensure downstream analyses can be performed with confidence in terms of minimizing 

12 [Li et al., 2009b]

13 Some mappers have a shorter sorting duration because they map fewer reads thus have fewer reads to sort.

14 SOAP2 doesn’t produce a standard file format, so this is the duration to convert the results to SAM format 

using soap2sam.pl



error rates and maximizing repeatability of results across multiple input samples. One such 
analysis is variant calling between a sample dataset and a known reference, which can be 
performed scalably on high throughput data for multi-exon amplicon panels or whole genomes 
and on multiple data sets simultaneously. The output of the variant analyses is a variant report 
for all differences between the sample and the reference, specifically identifying various types of 
SNPs and INDELs. 
 
Variant reports can be used in disease diagnostics where a researcher is looking for any 
variants from among a set of known disease causing variants to assign a disease condition 
and prognosis for a patient based on known metadata. Alternatively, variant reports can 
be used to identify candidate causal variants from among unknown variants by additional 
filtering on metadata fields, and in tandem with tools such as SIFT and PolyPhen the effects 
(severity, loss-of-function, gain-of-function etc.) of those variants can also be determined. These 
variant reports are an ideal output for clinical analysts in CLIA certified laboratories that need 
to orthogonally evaluate variants and fundamental researchers attempting to identify novel 
causative relationships between genotype and phenotype.
 
These results demonstrate that the Geneious Read Mapper in version 6.0 produces reliable 
and accurate alignments through regions of relatively low identity (89%) where two major 
types of polymorphisms, SNPs and INDELs, are present using two of the major sequencing 
technologies, Illumina and Ion Torrent. In comparison to other mappers, the default settings of 
the Geneious Read Mapper give far superior results compared with existing read mappers and 
in terms of speed is not dissimilar from the fastest mappers available. Geneious also integrates 
variant calling making it an ideal integrated suite of tools for diagnostic applications that require 
confirmation by clinical analysts in CLIA certified laboratories or exploratory research of novel 
genotype-phenotype associations.
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